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The linear stability of a two-dimensional buoyant plume is analysed by taking into 
account the transverse velocity component and the streamwise variations of the basic 
flow and of the disturbance waves. The solutions indicate the dependence of the 
spatial amplification rate and wavenumber on the disturbance flow quantity under 
consideration as well as on the streamwise and transverse coordinates. The use of the 
flow quantity relative to the basic flow leads to close agreement with the neutral curve 
according to quasi-parallel-stability theory, the usual method for treating nearly 
parallel flows. However, the amplification rate within an unstable region shows 
substantial deviation from that predicted by the quasi-parallel theory. The validity 
of this non-parallel theory is supported by the existing experimental data. 

1. Introduction 
The stability of laminar flows has attracted the attention of many researchers. The 

quasi-parallel-flow assumption has been used extensively in linear-stability analyses 
for nearly parallel shear flows of boundary-layer type. However, it is only com- 
paratively recently that the linear stability of natural-convection boundary layers 
has received attention, since the effect of velocity-temperature disturbance coupling 
through the buoyancy term in momentum equation increases the complexity. 

The stability characteristics of a buoyant plume generated above a heated body 
are substantially different from those of flows arising adjacent to the surface, owing 
to the absence of damping of the disturbance at the surface. In  general, unbounded 
flows such as plumes and jets are more unstable than bounded or semi-bounded flows. 
The quasi-parallel theory results in very low values of critical Reynolds numbers for 
many unbounded flows. It is not clearly justifiable for these flows to treat the basic 
flow as quasi-parallel, since the transverse velocity component and streamwise 
variations of the basic flow are not negligible at such low Reynolds numbers. 

This paper concerns the linear stability of a steady, buoyant plume which is 
idealized as a two-dimensional plume above a horizontal line source of heat in an 
extensive medium. The quasi-parallel theory has been applied to  such a plume by 
Pera & Gebhart (1971) and Wakitani & Yosinobu (1984), who took into account the 
effect of the disturbance coupling. These results show that the plume is unstable at 
almost all Grashof numbers. The neutral curve obtained for a Prandtl number of 0.7 
(air) does not exhibit the existence of a lower branch and a critical Grashof number. 
For the extremely low values of the Grashof number involved, the quasi-parallel-flow 
assumption is of questionable validity and a similar question .could also be raised 
concerning the basic flow itself under the usual boundary-layer approximation. 

The main difficulty in treating linear-stability problems for non-parallel flows lies 
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in solving partial differential equations, which are non-separable, rather than the 
ordinary differential equations which occur for truly parallel flows. 

Haaland & Sparrow (1973) accounted for only some non-parallel effects on the 
linear stability of the plume by retaining the transverse velocity component and the 
streamwise derivatives of the basic flow, excluded in the quasi-parallel approach. In 
this model the governing equations are separable and they reduce to the modified 
forms of the Orr-Sommerfeld equation with the temperature-coupling term and the 
disturbance-energy equation. The retention of the transverse velocity component 
leads to containment of the disturbance vorticity and temperature within the 
boundary layer (Haaland 1972). Haaland & Sparrow (1973) succeeded in obtaining 
a complete neutral curve, which exhibited both a lower branch and a critical Grashof 
number of about 5.1, in terms of the present notation. Their results show that the 
unstable region is smaller than that obtained from the quasi-parallel theory. 
However, Ling & Reynolds (1973) pointed out that the argument for deriving the 
modified Orr-Sommerfeld equation was contradictory. 

Another contribution to the stability theory of a two-dimensional plume has been 
made by Hieber & Nash (1975). They analysed the linear stability by means of a 
systematic expansion which allows the incorporation of higher-order effects of the 
boundary layer into the basic flow. However, the lowest-order equation which they 
used is no more than the inviscid Orr-Sommerfeld equation; the viscous and 
temperature-coupling terms appear in the next-order equation together with those 
of some non-parallel effects. Their analysis leads to a large reduction of instability 
and yields a critical Grashof number of 7.3. 

Thus, to the author’s knowledge, no systematic solution has been developed to  
describe properly all non-parallel effects on the stability of a two-dimensional plume. 

Recent developments in the linear-stability theory of nearly parallel flows have 
used the method of multiple scales, the WKB, ray, or slowly varying approximation 
method. This method was first applied to the Blasius boundary layer (Bouthier 1972. 
1973; Gaster 1974; Saric & Nayfeh 1975). It results in the rather striking situation 
that the various disturbance quantities considered have different amplification rates, 
in comparison with the quasi-parallel theory. The stream function, for example, may 
be growing a t  some point in the flow while the velocity components may be decaying. 
This implies that  the neutral curve will depend on the disturbance quantity 
considered. However, Saric & Nayfeh (1975) neglected to include the streamwise 
variation of the eigenfunction in the expression for the amplification rate (Eagles & 
Weissman 1975). Therefore, the much better agreement which they obtained with 
the existing experimental data than Gaster (1974) is largely accidental. 

Several attempts to  apply the method of multiple scales to  the theory of the 
non-parallel stability of unbounded flows have been made for the Bickley jet (Garg 
& Round 1978; Garg 1981; Morris 1981). It is well known that the quasi-parallel 
theory yields a low value of 4.0 for the critical Reynolds number for this flow. Garg 
(1981) calculated the amplification rate based on the kinetic energy, averaged over 
time and integrated across the jet. His theory leads to  an increase in the critical value 
from 4.0 to  21.6, but this seems to  be opposite to the result of Garg & Round (1978) 
based on the same definition of the amplification rate as that used by Saric & Kayfeh 
(1975). Thus, in unbounded flows, the various definitions of the amplification rate 
may result in remarkably different stability characteristics. If one attempts to 
compare the theory with experimental data, one must therefore use the amplification 
rate based on the same quantity as that which was observed. 

I n  this paper we follow Gaster (1974) and present a non-parallel-stability analysis 
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which accounts for the vertical structurc of the quasi-parallel solution for a 
two-dimensional plume in ordering the terms in the expansion. This analysis 
determines the solution as a function of the streamwise coordinate and estimates the 
effect of the streamwise variation of the plume basic flow on its stability characteristics. 
The results obtained for a Prandtl number of 0.7 are compared with the available 
experimental data. 

2. Analysis 
We consider the stability of a two-dimensional, steady plume above a horizontal 

line source of heat described by the stream function Y(x, y) and temperature T(x, y). 
Here x is the vertical coordinate measured from the heat source and y is normal to  
it. According to  the standard procedure in linear-stability theory of superimposing 
a small disturbance upon the basic flow, the stream function and temperature of the 
disturbed flow are taken to have the form 

where ‘i is time. Substituting (1) into the Navier-Stokes and energy equations based 
on the Boussinesq approximation, subtracting the equations for the basic flow and 
neglecting the nonlinear terms in the disturbance quantities, we obtain 

a av a a a$ a m  a a$h at 
- (V2$h)+--(V2$)+- (V?P)----(V2$h)--(V2Y)-= gp*-+vv4$h, 
a’i ay ax ax aY ax ay a Y  ax a Y  

and (3) 

where g is the acceleration due to gravity, /?* the coefficient of thermal expansion, 
v the kinematic viscosity and K the thermal diffusivity. 

Initial disturbance is assumed to  exist a t  a location xo and solutions are sought 
for x > xo. We introduce new coordinates (6 ,  7) to rescale the problem (Gaster 1974) : 

where 

G* being the modified Grashof number, k the thermal conductivity and Q the strength 
of heat source per unit length. I n  terms of 6 and 7, the spatial derivatives transform 
into 

For the plume flow the stream function and temperature of the basic flow can be 
obtained as series of the form 

(4) 
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by including higher-order terms of the boundary layer (Hieber & Nash 1975). Here 
T,  is the ambient temperature, assumed to  be constant. The governing equations 
for f,, f,, h, and h, are given in appendix A. 

For the disturbances we seek constant-frequency solutions of the form 

with 

Here P is the real dimensionless frequency of the disturbance, a the complex 
dimensionless wavenumber as the separation parameter and T the dimensionless time, 
based on the scales A@@, A 2 @ @ / v  for length and time respectively. Thus the real 
part of a defines the wavelength in terms of the local plume thickness. 

Substituting (4) and (5) into (2) and (3) yields the equations for $ and s: 

- ialfl(D2 -a2) -f;”] $ +i[(fl+ 25$”) D$ + (3f0 - 27fJ (D2 - a2) D$] 

where L, G (GO)-’ (D2-a2)2-ia[(fi---) P (D2-a2)--&”], 

L, = (PrG@)-l (D2-a2)-ia(f;-[). 
a 

The primes and D = a/a7 indicate differentiation with respect to  7, and Pr = u / K  is 
the Prandtl number. 

The plume flow is known to be more unstable to  the disturbance for the case when 
$ is even and 5 is odd (Pera & Gebhart 1971). We shall consider only this mode of 
the disturbance and therefore take the boundary conditions as 

I D$ = D3$ = s = 0 a t  7 = 0, 

$, D$, s+O as ~ + c Q .  

3. Solution 

Solutions can be found of the form 
Equations (6) and (7) do not separate unless some terms of order G-’ are ignored. 

(9) I $(L 7) = 48 $0(7 ; 5) +.$1(5, 7) + o ( 4 ,  

5 K  7)  = 4 6 )  s,(v ; E )  + .%(6, 7) + O ( E ) ,  

where A is a weak function of E incorporated to  take some account of the streamwise 
variations of the wavenumber and eigenfunctions. A is unknown a t  this level of 
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approximation. Since the approximation used in deriving the leading terms in (9) 
neglects terms of order G-' it may be expected that E is of order G-l. But the viscous 
and temperature-coupling terms in (6), and the diffusion term in (7) should be 
retained in the lowest-order approximation so that the resulting equations reduce to 
those of the Orr-Sommerfeld type derived from the quasi-parallel theory. 

Substituting (9) into (6) and (7), and putting 6 = (G&-I we obtain the following. 

O(E0) : L@, = 0, (10) 

where 

and 

Fl A + Fz 6- 

the Fs being known and defined in appendix B. From (8) the boundary conditions 
are 

'I (12) 
D#, = D3#, = s, = 0 at 'I = 0, 

#,, w,, s*+o as 'I+a J 
for j = 0 and 1. Noting that G* = G@ we find that the eigenvalue problem in (10) 
and (12) is the familiar Orr-Sommerfeld problem based on the quasi-parallel 
assumption (Pera & Gebhart 1971). In  addition, (11) and (12) describe the non-parallel 
effects. 

For the solution of the inhomogeneous problem consisting of (11) and (12), the 
solvability condition can be applied by use of the adjoint function @*. This solvability 
condition is given by 

/rT@*M dq = 0, (13) 

where %* = (#*, s*) denotes the transpose of @*. @* is the eigenfunction corres- 
ponding to the eigenvalue a of the adjoint problem and therefore satisfies the adjoint 
equation 

and boundary conditions identical with (12) 

L*@* = 0, (14) 

(15) I D#* = D3#* = s* = 0 

#*, D#*, s*+O as q+co, 

a t  q = 0, 

where 

with L: (G@)-1(D2-a2 (D2-a2)+2j': D]. 

The adjoint problem has the same eigenvalue as the original problem. For the 
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inhomogeneous equation (1 1) a solution satisfying the condition (12) is impossible 
unless the solvability condition (13) is satisfied. We must therefore take 

roo 

J O  

The first correction to the parallel-flow solution A(€J, which would be a constant for 
a truly parallel basic flow, is obtained from (16) for all ( > 1 .  

In  order to  determine dA/d[ from (16), we need to evaluate a@,/aE and da/d(. 
To do this we differentiate (10) with respect to  6, and can readily write the result 
as 

where the 9's are known functions of +o and so. The boundary conditions are also 
obtained by differentiating (12) with respect to  6. 

This inhomogeneous problem is also solved by applying the solvabilit,y condition 
that yields r m  

J O  

With (da/dE known from (18), Ea@,/a( can be evaluated from int,egration of ( I T ) .  

4. Numerical procedure 
The sixth-order system of linear homogeneous differential equations (10) with the 

boundary conditions (12) is first solved using the method of Hieber & Gebhart (19i l ) .  
This solution is written as the sum of three linearly independent solutions: 

@o = @ O l  + &(6) @02 + B3M @03' (19) 

where @ 03 . =  ( " j )  with j  = 1. 2. 3 
SOj 

and the coefficient of GOl taken to  be 1 ,  thereby fixing the arbitrary scale of the 
disturbance. The asymptotic solutions as y +  00 of the three linearly iiideyendent 
solutions eel, @,, and eO3 are given by Pera & Gebhart (19i1) and \Yakitmi b 
Yosinobu (1984). These asymptotic solutions are used as starting values for the 
numerical integration of (lo), which proceeds inward from some large value of ) I (  = t i e )  

to the centreline of the plume (y = 0) .  For given values of Pr. p and G'* ( =  @). 
a complex value for a is guessed and fDOl. eOz and eO3 are integrated separately using 
a fourth-order Runge-Kutta method. From the values of the three solutions at )I = 0. 
B, and B, are determined from the boundary conditions D+,(O) = D390(0) = 0. Tlic 
remaining condition, i.e. so(0) = 0. is satisfied for the gircn ,8 and G* if. and only if. 
a takes an eigenvalue. The initial guess for a is refined iteratircly by applying thc 
Newton-Raphson method to the unsatisfied boundary condition. Tlic priwiw is 
repeated until I so(0) I is sufficiently small ( < typically). 
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With the eigenvalue a obtained, (14) is integrated to determine the adjoint function 
O* using a procedure similar to the one above. No iteration is needed since the adjoint 
problem has the same eigenvalues. Hence the calculation of O* was used as a check 
on the accuracy of the calculated eigenvalues. 

Then fda/df is evaluated from (18), and the inhomogeneous equation (17) is 
integrated to determine faO,/af by using the proper starting values. 

With a, fda ldf ,  O,, O* and faOo/ag known, ( [ / A )  dA/d[ is calculated from (16). 
All computations were performed in double precision on an ACOS 700 computer. 
The effect of different mesh size AT/ and values of qe was examined. Typical values 
used were A7 = 0.1 and T~ = 10 (for small BG*, ye = 24). 

5. The amplification rates and wavenumbers 
In truly parallel flows the eigenfunctions are independent of the streamwise 

location f ,  and the exponential part of the stream function or temperature uniquely 
defines the wavenumber and amplification rate. These parameters are, however, not 
uniquely defined for non-parallel flows. The eigenfunctions vary slowly with the 
streamwise location, and the wavenumber and amplification rate therefore depend 
on the disturbance quantities considered. The choice of different values for these 
quantities leads to results differing by amounts of order G-l. 

The 'physical' amplitudes of u = a@-/ay and t ,  which may be measured simply in 
an experiment, are given by 

Iu( = - Qf~[lAIID~oIe-ei+O(G-l)] ,  

It1 =(~)(G@)-l[lAllsol e-''+O(G-l)], 

(3 

where Oi is the imaginary part of 8. We define the amplification 

(20) 

rates for u and t as 

to O(G-l). Here suffixes r and i denote real and imaginary parts. The term f f / G  is 
included in the definition so that the leading terms in (21) agree with the amplification 
rate given by the quasi-parallel theory: -ai. The terms in the group of order G-' 
arise from the amplitude function, the eigenvalue modification with Grashof number 
and the coordinate system respectively. When ai is equal to zero, i.e. a t  the neutral 
point determined by the quaai-parallel theory, there is still growth or decay due to 
the higher-order effects. Since the second terms in the group O(G-') depend on 7, their 
values must be evaluated at some position, e.g. where I u I or I t I is a maximum, to 
determine the amplification rate. 

It is convenient to introduce a measure of the amplitude relative to the basic flow, 
since the basic state is changing downstream (Eagles & Weissman 1975). We define 
the 'relative' amplitudes of u and t as I .ii I = I u I /  U, and I E I = I t I / (  To - T,) respcct- 
ively, where Uo and To are the streamwise velocity component and temperature of 
the basic flow on the plume centreline (7 = 0) respectively, and therefore 
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to O(G-1). 
Furthermore, we use the kinetic-energy and thermal-energy integrals to characterize 

the stability and thus remove any ambiguity in the definition of the neutral curve. 
These quantities m e  difficult to measure but physically meaningful parameters. They 
are defined a8 

where an overbar indicate8 an average over a period. The amplification rates based 
on these quantities are 

to O(@l), where 
r m  rw 

We also define the relative kinetic-energy and thermal-energy integrals as 

and therefore 

to O(G-l). 

wavenumbers. The phases of u and t are given by 
In addition to the amplification rate we consider higher-order 

phu = B,+argA+arg Dglo+O(G-l), 

ph t = Or + arg A + arg so+ O(G-l), 

corrections to the 

(25) 

where arg denotes the argument. The wavenumber is then the derivative of the phase 
of the disturbance with respect t o  f .  We therefore define the wavenumbers for u and 
t as 
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FIGURE 1.  Neutral curves based on amplitudes and integral parameters for Pr = 0.7 : ----, neutral 
curve according to quaai-parallel theory ; , neutral curve by Haaland & Sparrow (1973); 
___- , neutral curve by Hieber 6 Nash (1975). . . . . . . . . . ., contours of constant frequencies for air 
for Q = 56.3 W/m (test condition of Pera & Gebhart 1971); 0, data of minimum and maximum 
frequencies of naturally occurring disturbance temperature in air (Yosinobu et d. 1979). 

to O(G-l), respectively. The leading terms in (26) agree with the wavenumber given 
by the quasi-parallel theory: a,. The wavenumber also depends on 7 and on the 
disturbance quantity considered. 

6. Results 
For a range of Grashof numbers and frequencies, the various amplification rates 

defined in $5 were calculated numerically for the case Pr = 0.7 (air). Here the 
amplification rate for the amplitude in (21) or (22) was evaluatsd at  the point where 
the amplitude was a maximum. These amplification rates were used to determine the 
neutral boundaries which separate the stable from the unstable region in the 
(p, G*)-plane. Figure 1 shows the neutral curves based on the amplitudes I u I and I t 1, 
the kinetic-energy integral E and the thermal-energy integral H ,  which are measured 
absolute1 , while figure 2 shows the neutral curves based on their relative quantities 
I .ii 1, I 81, If and I?. For the sake of comparison, these figures a180 include the neutral 
curves, corresponding to ai = 0, according to the quasi-parallel theory, and to the 
theories of Haaland & Sparrow (1973) and Hieber & Nash (1975). 

The curves based on I u I and E in figure 1 lie within the stable region given by the 
quasi-parallel theory except at  extremely low G*. For 1 u I and E ,  therefore, the growth 
of the boundary layer of the plume leads to a reduction in the stable region. For I t I 
and H ,  on the other hand, it leads to an increase in the stable region. Furthermore, 
the curve based on I t (  or H yields critical Grashof numbers of about 6.7 or 8.4, 
respectively. For such low values of the Grashof numbers two major questions will 
arise: whether a suitable description of the basic flow is obtained; and whether the 
approximation to the solutions of the disturbance equations (6) and (7) is valid. The 
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FIQURE 2. Neutral curves based on amplitudes and integral parameters relative to basic flow 
quantities for Pr = 0.7: ----, neutral curve according to quasi-parallel theory; ---, neutral 
curve by Hmland & Sparrow (1973); ----, neutral curve by Hieber & Nash (1975); 0, data 
on neutral disturbance temperature in air (Yosinobu et al. 1979). 

method of approximation used here is valid to O(G*-l) for a weakly non-parallel 
plume. This necessarily requires that G* % 1 for a useful result to be obtained. 
Measurements of the laminar temperature profiles made by Forstrom & Sparrow 
(1967) show excellent agreement with the analytical predictions based on the usual 
boundary-layer approximation even at the lowest Grashof number, giving a rough 
estimate of G* x 6. It is also shown by Tatsumi & Kakutani (1958) in their stability 
analysis of the Bickley jet that the stability characteristics at  low Reynolds numbers 
depend only on integrals of the velocity distribution of the basic flow. The present 
analysis accounts for higher-order effects of the boundary layer of the plume basic 
flow. In  the light of these facts the stability characteristics obtained at  low Grashof 
numbers will not deviate so far from the exact ones, in comparison with those of 
Haaland & Sparrow and Hieber & Nash. They do not treat the non-parallel effects 
of disturbance waves correctly; for example, their analyses do not account for the 
amplitude function A(()  in (9). 

The contours of physical constant frequencies, given by /3G*-i = const., are plotted 
on figure 1 under the test conditions of Pera & Gebhart (1971). They indicated that 
disturbances with frequencies higher than about 12 Hz were not detected downstream 
using a hot-wire anemometer. Quantitative comparison of the results obtained here 
with their observations is not possible since i t  is not clear whether they actually 
observed the streamwise component of the disturbance velocity. Yosinobu et al. 
(1979) measured disturbance temperature using a fine thermocouple probe and 
observed the small disturbances which naturally occur in the region G* w 40. Their 
maximum and minimum frequencies are also plotted on figure 1.  These data lie in 
a region where any disturbance is amplified. Similar results, which are not shown in 
the figure, are obtained in an experiment by Bill & Gebhart (1975) on transition to 
turbulence. However, they seem to fail to set a laminar plume stably since the time 
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variation of thermocouple outputs is rather uneven, in comparison with that of 
Yosinobu et al., even in the laminar region. 

Each neutral curve in figure 2, based on the relative quantity, shows only a small 
deviation from the curve derived from the quasi-parallel theory. This indicates that 
the neutral curve is strongly affected by the streamwise variations of the basic flow 
such that the streamwise velocity increases like xi and the temperature decreases like 
z-t. Thus for the plume flow the use of a relative quantity in the definition of an 
amplification rate leads to close agreement with the neutral curve obtained from the 
quasi-parallel theory. Yosinobu et al. (1979) made measurements of the growth or 
decay in the maximum amplitude of the disturbance temperature relative to the basic 
flow. Their data on neutral disturbances are plotted on figure 2. It should be noted 
that all of these data would give damped disturbances because of the downstream 
decrease in the basic temperature, provided the absolute amplitudes were used in 
measurements of the growth or decay; then, the neutral curve based on I t I in figure 1 
will show good agreement. This situation cannot be explained by the theories of 
Haaland & Sparrow and Hieber & Nash as well as by the quasi-parallel theory. 

Figure 3 shows various amplification rates for absolute quantities as a function of 
/?, where K(u)  and K( t )  are evaluated at  7 where each amplitude is a maximum. In 
a higher-frequency region K ( E )  and K(u)  become slightly larger than those obtained 
from the quasi-parallel theory: -ai. On the other hand, K(H)  and K ( t )  are smaller 
than ( -ai) over a full frequency range. However, it iB noted that every amplification 
rate obtained in a low-frequency region is smaller than ( -ai). The growth of the plume 
leads to an increase of stability in the region. This result will be significant in the 
analysis of downstream developments of disturbances since the region contains the 
point of a maximum amplification rate. 

Figure 4 shows various amplification rates for relative quantities. K(#) and K ( f )  
are displayed in figure 4 (b) and K ( A )  in figure 4 (a)  ; the other curves would be found 
in the vicinity of those shown. There is no difference between figures 3 and 4 in the 
amplification rates according to the quasi-parallel theory and to the theories of 
Haaland & Sparrow and Hieber & Nash. The result indicates that the use of relative 
quantities leads to small deviations among various amplification rates obtained by 
the non-parallel theory developed here. Nevertheless, those for the relative quantities 
are also fairly small compared with ( -ai) in the low-frequency region. Figure 5 shows 
a comparison of the theoretical amplification rates at G* = 20 with the experimental 
data of Wakitani & Yosinobu (1984) obtained from measurements of the relative 
amplitudes of disturbance temperature at G* = 19 using a similar method to that of 
Dring & Gebhart (1969). Apparently, agreement between experiment and theory has 
been improved by the first-order correction to the amplification rate. Again, it should 
be noted that these data were reduced by 0.03 approximately provided that the 
absolute amplitudes were used. 

Figure 6 shows the variations of the amplification rates for u and t with the 
transverse coordinate 7 at G* = 20 and 50 while figure 7 shows the variations of the 
wavenumbers. Both the amplification rate and wavenumber for u exhibit gradual 
variations with 7 as shown in these figures. On the other hand, those for t change 
extensively at large 7. The variations of the amplification rate and wavenumber for 
t are stronger as G* decreases. 

Figure 8 shows the streamwise variation of the wavenumbers based on u and t along 
two contours of constant frequency. These wavenumbers are also evaluated at 7 where 
each amplitude is a maximum. N ( u )  and N ( t )  are shown to be nearly equal but to 
be smaller than those determined from the quasi-parallel theory: a,. This result 
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indicates that the first-order correction to the wavenumber as well as the amplification 
rate is important for the plume flow. 

7. Conclusions 
The non-parallel-flow effects on the linear stability of a two-dimensional buoyant 

plume have been investigated for a Prandtl number of 0.7 using the method of 
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multiple scales. The solutions take into account the transverse velocity component, 
higher-order effects of the boundary layer and the streamwise variations of the basic 
flow and of the disturbance waves. 

The amplification rate (spatial) is a function of the transverse as well as the 
streamwise coordinate. Furthermore, the amplification rate is a function of the flow 
quantity involved, i.e. the velocity components, temperature, kinetic energy, etc. 
This leads to different neutral curves for different flow quantities, in contrast to the 
quasi-parallel and the other intuitive approaches which have been used previously 
for the plume. The wavenumber is also a function of the streamwise and the 
transverse coordinates and the flow quantity. 

The neutral curves depend largely on the various flow quantities considered. The 
shifts in these curves compared with the curve from the quasi-parallel theory are 
comparatively large over a wide range of Grashof numbers. The use of the flow 
quantity relative to the basic flow leads to close agreement with the neutral curve 
obtained from the quasi-parallel theory. This suggests that the streamwise variations 
of the basic flow largely give rise to the shifts in the neutral curves. The available 
experimental data support the use of the relative quantity. The quasi-parallel and 
the other intuitive approaches do not show any difference between the experimental 
data according to whether the relative quantity has been used. 

Each amplification rate within a low-frequency region is smaller than the one 
predicted by the quasi-parallel theory, even though the relative quantity is used. 
However, the use of the relative quantities leads to small deviations among various 
amplification rates according to the non-parallel theory developed here. The non- 
parallel correction to the wavenumber as well as the amplification rate is significant. 
The first-order correction to the amplification rate gives good agreement between 
theory and experiment. 

Further experiments to  verify the present theory will appear in the near future. 

The author is grateful to Professor Hirowo Yosinobu for his valuable discussion 
and encouragement throughout this work. 

Appendix A 

layer region of the basic flow are given by (4), where fo and h, are governed by 
Appropriate expansions for the stream function and temperature in the boundary- 

f ~ + f f o f o " - ~ f ; 2 + h o  = 0, h;+iPrf,h, = 0, (A 1) 

The integral condition in (A 2) is a dimensionless representation of the fact that the 
heat dissipated by the source is convected entirely by the plume. The above is the 
classical problem described by Fujii (1963) but the integral condition is different. 

In the higher-order terms in (4)f1 and h, are governed by 

2n: 
5 f,(O) =f;(o) = hi(0) = h,(m) = 0, f;(m) = fcot-f,(oo). 
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The numerical integration of Hieber & Nash (1975) for Pr = 0.7 results in 

fi(0) = 0.93273, ho(0) = 0.49654, fi(0) = 0.09969, 

h,(O) = -0.251 11, f0(a) = 2.21121, 

f, -fi(co)q-0.38089 a s q + a .  

fo, f!, h,, h1 and their derivatives can be found easily by solving (A 1)-(A 5) 
numerically. 

Appendix B 

solutions of (10). These quantities are 
To determine (LJA)dA/d[ from (16) it  is necessary to evaluate the Fs from 

Fi = (2a19-3a%-fr) (6$-%D$o+%o) 84 

+ ca-3afi)(6$-4 $o+ia[f;(DZ-aa)--fl”l$O 

-t[(f,”+27f3 D$,+ (3fo-27,fi) (Da-aa) WO1 

+fi [ 5 DZ (2) -3 Da$, -t DVO] 9 

FZ = (2a~-3a~i-fr)$O+fiDa40,  
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